Articles About The Importance Of Critical Thinking

On By In 1

The role of critical thinking skills and learning styles of university students in their academic performance

ZOHRE GHAZIVAKILI,1ROOHANGIZ NOROUZI NIA,2FARIDE PANAHI,3MEHRDAD KARIMI,4HAYEDE GHOLSORKHI,5 and ZARRIN AHMADI6

1Emergency medical services department, Paramedical school, Alborz University of Medical Sciences, Karaj, Iran;

2Educational Development Center, Alborz University of Medical Sciences, Karaj, Iran;

3Nursing and midwifery school, Shahid Beheshti University of Medical Sciences, Tehran, Iran;

4Department of Epidemiology and Biostatistics, Public Health School, Tehran, Iran;

5Medical school, Alborz University of Medical Sciences, Karaj, Iran;

6Amirkabir University of Technology(Polytechnic), Tehran, Iran

Correspondence: Roohangiz Norouzi Nia, Educational Development Center, Alborz University of Medical Sciences, Karaj, Iran, Tel: +98-26-32563341, Email: kiarash_s_77@yahoo.com

Author information ►Article notes ►Copyright and License information ►

Received 2014 Jan 18; Accepted 2014 May 19.

Copyright © 2014: Journal of Advances in Medical Education & Professionalism

This is an Open Access article distributed under the terms of the Creative Commons Attribution License, (http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

J Adv Med Educ Prof. 2014 Jul; 2(3): 95–102.

This article has been cited by other articles in PMC.

Abstract

Introduction: The Current world needs people who have a lot of different abilities such as cognition and application of different ways of thinking, research, problem solving, critical thinking skills and creativity. In addition to critical thinking, learning styles is another key factor which has an essential role in the process of problem solving. This study aimed to determine the relationship between learning styles and critical thinking of students and their academic performance in Alborz University of Medical Science.

Methods: This cross-correlation study was performed in 2012, on 216 students of Alborz University who were selected randomly by the stratified random sampling. The data was obtained via a three-part questionnaire included demographic data, Kolb standardized questionnaire of learning style and California critical thinking standardized questionnaire. The academic performance of the students was extracted by the school records. The validity of the instruments was determined in terms of content validity, and the reliability was gained through internal consistency methods. Cronbach's alpha coefficient was found to be 0.78 for the California critical thinking questionnaire. The Chi Square test, Independent t-test, one way ANOVA and Pearson correlation test were used to determine relationship between variables. The Package SPSS14 statistical software was used to analyze data with a significant level of p<0.05.

Results: Our findings indicated the significant difference of mean score in four learning style, suggesting university students with convergent learning style have better performance than other groups. Also learning style had a relationship with age, gender, field of study, semester and job. The results about the critical thinking of the students showed that the mean of deductive reasoning and evaluation skills were higher than that of other skills and analytical skills had the lowest mean and there was a positive significant relationship between the students’ performance with inferential skill and the total score of critical thinking skills (p<0.05). Furthermore, evaluation skills and deductive reasoning had significant relationship. On the other hand, the mean total score of critical thinking had significant difference between different learning styles.

Conclusion: The results of this study showed that the learning styles, critical thinking and academic performance are significantly associated with one another. Considering the growing importance of critical thinking in enhancing the professional competence of individuals, it's recommended to use teaching methods consistent with the learning style because it would be more effective in this context.

Key words: Learning, Performance, Student

Introduction

The current world needs people with a lot of capabilities such as understanding and using different ways of thinking, research, problem solving, critical thinking and creativity. Critical thinking is one of the aspects of thinking that has been accepted as a way to overcome the difficulties and to facilitate the access to information in life (1).

To Watson and Glizer, critical thinking is a combination of knowledge, attitude, and performance of every individual. They also believe that there are some skills of critical thinking such as perception, assumption recognition deduction, interpretation and evaluation of logical reasoning. They argue that the ability of critical thinking, processing and evaluation of previous information with new information result from inductive and deductive reasoning of solving problems. Watson and Glizer definition of critical thinking has been the basis of critical thinking tests that are widely used to measure the critical thinking today (2).

World Federation for Medical Education has considered critical thinking one of the medical training standards so that in accredited colleges this subject is one of the key points. In fact, one of the criteria for the accreditation of a learning institute is the measurement of critical thinking in its students (3).

In addition to critical thinking, learning style, i.e. the information processing method, of the learners, is an important key factor that has a major role in problem solving. According to David Kolb’s theory, learning is a four-step process that includes concrete experience, reflective observation, abstract conceptualization and active experimentation. This position represents two dimensions: concrete experience versus abstract thinking, and reflective observation to active experimentation. These dimensions include four learning styles: divergent, convergent, assimilate, and accommodate. According to Kolb and Ferry, the learner needs four different abilities to function efficiently: Learning styles involve several variables such as academic performance of learner, higher education improvement; critical thinking and problem solving (4).

Due to the importance of learning styles and critical thinking in students' academic performance, a large volume of educational research has been devoted to these issues in different countries. Demirhan, Besoluk and Onder (2011) in their study on critical thinking and students’ academic performance from the first semester to two years later have found that contrary to expectations the students’ critical thinking level reduced but the total mean of students’ scores increased. This is due to the fact that the students are likely to increase adaptive behavior with environment and university and reduce the stress during their education (1).

In another study over 330 students in Turkey, the students who had divergent learning style, had lower scores in critical thinking in contrast with students who have accommodator learning style (5).

Also Mahmoud examined the relationship between critical thinking and learning styles of the Bachelor students with their academic performance in 2012. In this study all the nursing students of the university in the semesters four, six and eight were studied. The results did not show any significant relationship between critical thinking and learning styles of nursing students with their academic performance (6).

Another research by Nasrabadi in 2012 showed a positive relationship between critical thinking attitudes and student's academic achievement. The results showed that there was a significant difference between the levels of critical thinking of assimilating and converge styles. Also converging, diverging, assimilating and accommodating styles had the highest level of critical thinking, respectively (4). Among other studies we can refer to Sharma’s study in 2011 whose results suggested a relationship between the academic performance and learning styles (7).

Today university students should not only think but also should think differently and should not only remember the knowledge in their mind but also should research the best learning style among different learning styles. Therefore, the study on the topic of how the students think and how they learn has received great emphasis in recent years. In this regard, with the importance of the subject, researchers attempted to doa research in this area to determine the relationship between critical thinking and learning styles with academic performance of the students at Alborz University of Medical Sciences.

Methods

This study is a descriptive-analytic, cross sectional study and investigates the relationship between critical thinking and learning styles with students’ academic performance of Alborz University of Medical Science in 2012. After approval and permission from university’s authorities and in coordination with official faculties, the critical thinking and learning styles questionnaire was given to the undergraduate students in associate degree, bachelor, medicine (second semester and after that). The total number of participants in the study was 216 students with different majors such as medical, nursing and midwifery, and health and medical emergency students. The tool to collect the data was a two-part questionnaire of Kolb's learning styles and California's critical thinking skills test (form B). The Kolb's questionnaire has two parts. The first part asks for demographic information and the second part includes 12 multiple choice questions. The participants respond to the questions with regard to how they learn, and the scores of respondents are ranked from 1 to 4 in which 4 is most consistent with the participants’ learning style 3 to some extent, 2 poorly consistent and 1 not consistent To find the participants’ learning styles, the first choice of all 12 questions were added together and this was repeated for other choices. Thus, four total scores for the four learning styles were obtained, the first for concrete experience learning style, the second for reflective observation of learning style, the third for abstract conceptualization learning style and the forth for active experimentation learning style. The highest score determined the learning style of the participant. The California critical thinking skills test (form B) includes 34 multiple choice questions with one correct answer in five different areas of critical thinking skills, including evaluation, inference, analysis, inductive reasoning and deductive reasoning. The answering time was 45 minutes and the final score is 34 and the achieved score in each section of the test varies from 0 to 16. In the evaluation section, the maximum point is 14, in analysis section 9, in inference section 11, in inductive reasoning 16 and in deductive reasoning the maximum point was 14. So there were 6 scores for each participant, which included a critical thinking total score and 5 score for critical thinking skills. Dehghani, Jafari Sani, Pakmehr and Malekzadeh found that the reliability of the questionnaire was 78% in a research. In the study of Khalili et al., the confidence coefficient was 62% and construct validity of all subscales with positive and high correlation were reported between 60%-65%. So this test was reliable for the research. Collecting the information was conducted in two stages. In the first stage, the questionnaires were given to the students and the objectives and importance of the research were mentioned. In the next stage, the students' academic performance was reviewed. After data collection, the data were coded and analyzed, using the SPSS 14 ( SPSS Inc, Chicago, IL, USA) software. To describe the data, descriptive statistics were used such as mean and standard deviation for continues variables and frequency for qualitative variables. Chi Square test, Independent t-test, one way ANOVA and Pearson correlation test were used to determine the relationship between variables at a significant level of p<0.05.

Research hypothesis

  1. There is a relationship between Alborz University of Medical Sciences students’ learning styles and their demographic information. 

  2. There is a relationship between Alborz University of Medical Sciences students’ critical thinking and their demographic information. 

  3. There is a relationship between Alborz University of Medical Sciences students’ academic performance and their demographic information. 

  4. There is a relationship between Alborz University of Medical Sciences students’ learning styles and their academic performance. 

  5. There is a relationship between Alborz University of Medical Sciences students’ learning styles and their critical thinking. 

Results

225 questionnaires were distributed of which 216 were completely responded (96%). The age range of the participants was from 16 to 45 with the mean age of (22.44±3.7). 52.8% of participants (n=114) were female, 83.3% (n=180) were single, 30.1% of participants’ (n=65) major was pediatric anesthesiology of OR, 35.2% of participants (n=76) were in fourth semester, 74.5% (n=161) were unemployed and 48.6 % (n=105) had Persian ethnicity.

The range of participants’ average grade points, which were considered as their academic performance, were from 12.51 to 19.07 with a mean of (16.75±1.3). According to Kolbs' pattern, 42.7% (n=85) had the convergent learning style (the maximum percentage) followed by 33.2 % (n= 66) with the assimilating style and only 9.5%, (n= 19) with the accommodating style (the minimum percentage).

Among the 5 critical thinking skills, the maximum mean score belonged to deductive reasoning skill (3.38±1.58) and the minimum mean score belonged to analysis skill (1.67±1.08).

Table 1 shows the frequency distribution and demographic variables and the academic performance of the students. According to the Chi-square (Χ2) p-value, there was a significant relationship between gender and learning style (p=0.032), so that nearly 50 percent of males had the assimilating learning style and nearly 52 percent of the females had the convergent learning style.

Table 1

The relationship between demographic variable and student’s academic performance with learning styles

The relationship between employment, major and semester of studying with the learning style was significant at a p-value of 0.049, 0.006, 0.009 and 0.001, respectively. The mean and standard deviation of age and students' academic performance in the four learning styles are reported in Table 1.

Using the one way analysis of variance (One way ANOVA) and comparing the mean age of four groups, we found a significant relation between age and academic performance with learning style (p=0.049).

The students with convergent learning style had a better academic performance than those with other learning styles and in the performance of those with the assimilating learning style the weakest.

Table 2 shows the relationship between the total score of critical thinking skills and each of the demographic variables and academic performance. The results of the t-test and one way ANOVA variance analysis are reported to investigate the relationship between each variable with skills below the mean standard deviation.

Table 2

Relationships between CCT Skills and demographic variables Using t-test and ANOVA. Pearson Correlation coefficient between age and Student's performance with CCT Skills was reported

Based on the t-test and ANOVA, p-value of t and F, the mean of total score of critical thinking skills had only significant relationship with students’ major (p=0.020). Also a significant relationship was found between the major of students and gender with inference skill; semester of study with deductive reasoning skill, and ethnicity with 2 skills of inference and deductive reasoning (p<0.05).

Also regarding the relationship between age and the student academic performance with each of the critical thinking skills, the Pearson correlation coefficient results indicated a significant positive relationship but a negative relationship between age and analysis skill, i.e. with the increase of age, the score of analysis skill was reduced (p<0.05). Academic performance of the students had a direct significant relationship with critical thinking total score and inference skill; the more the score, the better the academic performance of students (p<0.05).

Table 3 shows the mean and standard deviation of learning styles score in the 4 groups of learning style. Using ANOVA one way ANOVA, the relationship between learning style and critical thinking skills and the comparison of the mean score for each skill in four styles are reported in the last column of the Table 3.

Table 3

The Relationship between critical thinking styles with learning styles

Based on the p-value of ANOVA, the mean of evaluation skill and inductive reasoning skill had a significant difference and the relationship between these two skills with learning style was significant (p<0.05). Also the mean of critical thinking’s total score was significantly different in the four groups and the relationship between total score with learning style was significant, too (p<0.05).

Figure 1

The mean and confidence interval of university students’ performance in four learning  styles

Figure 2

The mean and confidene interval of critical thinking skills

Discussion

The study findings showed that the popular learning style among the students was the convergent style followed by the assimilating style which is consistent with Kolb's theory stating that medical science students usually have this learning style (8). This result was consistent with the results of other studies (9, 10). In Yenice's study in which the student of training teacher were the target of the project, the most frequent learning styles were divergent and assimilating styles and these differences originate from the different target group of study in 2012 (11).

This study showed a significant relationship between learning style and gender, age, semester and employment. Meyari et al. did not find any significant relationship between learning style, age and gender of the freshman but for the fifth semester students, a significant relationship with age and gender was found (10). Also in Yenice's study, no relationship with learning style, gender, semester and age was found.

Furthermore, in the first semester divergent style, in the second semester assimilating style and in the third and fourth semester divergent style were accounted for the highest percentage. Also in the group age of 17-20 years the assimilating style and the age of 21-24 years the divergent style were dominant styles (11).

In the present study, it was found a significant positive relationship between convergent learning style and academic performance. Also in the study of Pooladi et al. the majority of the students had convergent style and they also found a significant relationship between learning style, total mean score and the mean of practical courses (12). Nasrabadi et al. found that students with the highest achievement were those with convergent style with a significant difference with those with divergent style (4). But the results are inconsistent to Meyari et al.’s (10).

In this study, the obtained mean score from the critical thinking questionnaire was (7.15±2.41) that was compared with that in the study of Khalili and Hoseinzadeh which was to validate and make reliable the critical thinking skills questionnaire of California (form B) in the Iranian nursing students; the mean of total score was about the 11th percentile of this study (13).

In other words, the computed score for critical thinking of the students participating was lower than 11 score that is in the 50th percentile and of course is lower than normal range.

Hariri and Bagherinezhad had shown that the computed score for Bachelor and Master students of Health faculty was also lower than the norm in Iran (14). Also Mayer and Dayer came to a similar conclusion in critical thinking skill in the Agricultural university of Florida’s students in 2006 (15).

But in Gharib et al.’s study, the total score of critical thinking test among the freshman and senior of Health-care management was in normal range (16). Wangensteen et al., found that the critical thinking skills of the newest graduate nursing students were relatively high in Sweden in 2010 (17).

In this study, students of all levels (Associate, Bachelor and PhD) with various fields of study participated but other studies have been limited to certain graduate courses that may explain the differences in levels of special critical thinking skills score in this study. In this study we found a significant relationship between total score of critical thinking and major of the students. This result is consistent with Serin et al. (18).

It was found a significant relationship between major of participants, gender and inference skill, semester and deductive reasoning skill, ethnicity and both inference and deductive reasoning skills.

In the Yenice's study significant relationship between critical thinking, group of age, gender and semester was seen (11). In Wangensteen et al.’s (17) study in the older age group, the level of critical thinking score increased. In Serin et al.’s (18) study the level of communication skills in girls was better than that in boys. And also a significant relationship was found between critical thinking and academic semester, but in Mayer and Dayer’s study no significant relationship between critical thinking levels and gender was found (4,15).

The results also showed that the total score of critical thinking and analytical skills of students and their performance had a significant relationship. Nasrabady et al.’s study also showed that there was a positive relationship between critical thinking reflection attitude and academic achievement (4). This is contradictory with what Demirhan, Bosluk and Ander found (6, 15).

The results of the relationship between learning style and critical thinking indicated that the relationship between evaluation and inductive reasoning was significant to learning style (p<0.05). The relationship of critical thinking total score with learning style was also significant (p<0.05). Thus the total score for those with the conforming style of critical skills was more than that with other styles. But in the subgroup of inference skills, those with the convergent style had a higher mean than those with other styles.

Yenice found a negative relationship between critical thinking score and divergent learning style and a positive relation between critical thinking score and accommodating style (11).

Siriopoulos and Pomonis in their study compared the learning style and critical thinking skills of students in two phases: at the beginning and end of education and came to this conclusion that the learning style of students changed in the second phase.

For example, the divergent, convergent and accommodating styles languished and the assimilating style (combination of abstract thinking and reflective observation) was noticeably strengthened. However, those with converging learning style had higher levels of critical thinking.

The level of students’ critical thinking was lower in all international standards styles. Perhaps it was because of widely used teacher-centered teaching methods (lectures) in that university (19).

The results in the study of Nasrabady et al. showed that there was a significant difference between the level of learners’ critical thinking and divergent and assimilating styles (4).

Those with converging, diverging, assimilating and accommodating styles had the highest level of critical thinking, respectively.

Also there was a positive significant relationship between the reflective observation method and critical thinking and also a negative significant relationship between the abstract conceptualization method and critical thinking (4). But in another study that Mahmud has done in 2012, he did not find any significant relationship between learning style, critical thinking and students’ performance (6).

Conclusion

The results of this study showed that the students’ critical thinking skills of this university aren't acceptable. Also learning styles, critical thinking and academic performance have significant relationship with each other. Due to the important role of critical thinking in enhancing professional competence, it is recommend using teaching methods which are consistent with the learning styles.

Acknowledgment

This study is based on a research project that was approved in Research Deputy of Alborz University of Medical sciences. We sincerely appreciate all in Research Deputy of Alborz University of Medical sciences who supported us financially and morally and all students and colleagues who participated in this study.

Conflict of Interest: None declared.

References:

1. Demirhan E, Besoluk Ş, Önder I. The change in academic achievement and critical thinking disposition scores of pre-service science teaching over time. Journal of educational science. 2011:403–6.

2. Aloqaili AS. The relationship between reading comprehension and critical thinking: A theoretical study. Journal of King Saud University - Languages and Translation. 2006; 24(1): 35–41.

3. Hanse K. Basic Medical Education, WFME Global Standards for Quality Improvement. University of Copenhagen (Denmark): WFME office; 2012. THE WFME GLOBAL STANDARDS; pp. 1–46. Available from: www.wfme.org/standards.

4. Nasrabadi HM, Mousavi S, Kave Farsan Z. The Contribution of Critical Thinking Attitude and Cognitive Learning Styles in Predicting Academic Achievement of Medical University’s Students. Iranian Journal of Medical Education. 2012;12(4):285–96. Persian.

5. Yenice N. Investigating pre-service science teachers’ critical thinking dispositions and problem solving skills in terms of different variables. Educational Research and Reviews. 2011;6(6):497–508.

6. Mahmoud HG. Critical Thinking Dispositions and Learning Styles of Baccalaureate Nursing Students and its Relation to Their Achievement. International Journal of Learning & Development. 2012;2(1) Persian.

7. Sharma P. A study of learning-thinking style of secondary school students in relation to their academic achievement. International Journal on New Trends in Education and Their Implications. 2011;2(4):115–23.

8. Kolb AY. The Kolb learning style inventory–version 3.1. technical specifications. Boston: MA, Hay Resource Direct; 2005.

9. Najafi Kalyani M, Karimi Sh, Jamshidi N. Comparison of learning styles and preferred teaching methods of students in Fasa University of Medical Sciences. Arak Medical University Journal (AMUJ) 2010;12(4):89–94. Persian.

10. Meyari A, Kashani AS, Gharib M, Beiglarkhani M. Comparison between the Learning Style of Medical Freshmen and Fifth-year Students and its Relationship with their Educational Achievement. Strides in Development of Medical Education. 2009;6(2):110–118. Persian.

11. Yenice N. A review on learning styles and critically thinking disposition of pre-service science teachers in terms of miscellaneous variables. Asia-Pacific Forum on Science Learning & Teaching. 2012; 13(2):2–31.

12. Pooladi A, editor. The study of learning styles in different semesters medical students in basis of Kolb theory in Kordestan Medical Sciences University in 2006. Abstract of 8th National Congress on Medical Education; Kerman: Kerman University of Medical Sciences; 2007. pp. 51–2. Persian.

13. Khalili H, Hossein Zadeh M. Investigation of reliability, validity and normality Persian version of the California Critical Thinking Skills Test; Form B (CCTST) Journal of Medical Education. 2003; 3(1): 29–32. Persian.

14. Hariri N, Bagherinejad Z. Evaluation of critical thinking skills in mazandaran university of medical sciences'students, health faculty. Journal of mazandaran university of medical sciences. 2012; 22(1): 165–173. Persian.

15. Myers BE, Dyer JE. The influence of student learning style on critical thinking skill. Journal of Agricultural Education. 2006;47(1):43.

16. Gharib M, Rabieian M, Salsali M, Hadjizadeh E, Kashani AS, Khalkhali H. Critical Thinking Skills and Critical Thinking Dispositions in Freshmen and Senior Students of Health Care Management. Iranian journal of medical education. 2009;9(2):125–135. Persian.

17. Wangensteen S, Johansson IS, Björkström ME, Nordström G. Critical thinking dispositions among newly graduated nurses. Journal of advanced nursing. 2010;66(10):2170–81.[PMC free article][PubMed]

18. Serin O, Serin NB, Saracaloğlu AS, Ceylan A lu AS, Ceylan A, authors. The examination of critical thinking styles of university students (TRNC Sample) Procedia-Social and Behavioral Sciences. 2010;9(4):864–8.

19. Siriopoulos C, Pomonis GA. A Comparative Analysis of Economics Graduates' Learning Styles and Critical Thinking Skills. Social science research network. 2006:1–37. Available from: http://ssrn.com/abstract=976741 or http://dx.doi.org/10.2139/ssrn.976741.

Articles from Journal of Advances in Medical Education & Professionalism are provided here courtesy of Shiraz University of Medical Sciences

"Critical thinking is a desire to seek, patience to doubt, fondness to meditate, slowness to assert, readiness to consider, carefulness to dispose and set in order; and hatred for every kind of imposture." - Francis Bacon (1605)

As parents, we are tasked with instilling a plethora of different values into our children. While some parents in the world choose to instill a lack of values in their kids, those of us that don't want our children growing up to be criminals and various misfits try a bit harder. Values and morality are one piece of the pie. These are important things to mold into a child's mind, but there are also other items in life to focus on as well. It starts with looking both ways to cross the street and either progresses from there, or stops.

If you stopped explaining the world to your children after they learned to cross the street, then perhaps you should stop reading and go back to surfing for funny pictures of cats. I may use some larger words that you might not understand, making you angry and causing you to leave troll-like comments full of bad grammar and moronic thought processes. However, if you looked at the crossing the street issue as I did – as a logical problem with cause and effect and a probable solution – then carry on. You are my target audience.

Or perhaps the opposite is true, as the former are the people that could benefit from letting some critical thinking into their lives. So what exactly is critical thinking? This bit by Linda Elder in a paper on CriticalThinking.org pretty much sums it up:

Through critical thinking, as I understand it, we acquire a means of assessing and upgrading our ability to judge well. It enables us to go into virtually any situation and to figure out the logic of whatever is happening in that situation. It provides a way for us to learn from new experiences through the process of continual self-assessment. Critical thinking, then, enables us to form sound beliefs and judgments, and in doing so, provides us with a basis for a 'rational and reasonable' emotional life. — Inquiry: Critical Thinking Across the Disciplines, Winter, 1996. Vol. XVI, No. 2.

The rationality of the world is what is at risk. Too many people are taken advantage of because of their lack of critical thinking, logic and deductive reasoning. These same people are raising children without these same skills, creating a whole new generation of clueless people.

To wit, a personal tale of deductive reasoning:

Recently I needed a new transmission for the family van. The warranty on the power train covers the transmission up to 100,000 miles. The van has around 68,000 miles on it. Therefore, even the logic-less dimwit could easily figure that the transmission was covered. Well, this was true until the dealership told me that it wasn't, stating that because we didn't get the scheduled transmission service (which is basically a fluid change) at 30,000 and 60,000 miles the warranty was no longer valid. Now, there are many people that would argue this point, but many more that would shrug, panic, and accept the full cost of repairs.

I read the warranty book. I had a receipt that said the fluid was checked at 60,000 but not replaced. A friend on Twitter pointed out the fact that they were using 100,000 mile transmission fluid. So logically, the fluid would not have to be replaced under 100,000 miles if it wasn't needed, right? So why the stipulation that it needed to be replaced at 60,000 and the loose assumption that not doing that would void the warranty? So I asked the warranty guy to show me in the book where the two items are related. Where it explicitly says that if you don't get the service, the transmission isn't covered. There were portions where it said the service was recommended, but never connecting to actual repairs. Finally the warranty guy shrugged, admitted I was right and said the service was covered.

In this case, valid logic equaled truth and a sound argument. I used very simple reasoning and logic to determine that I was being inadvertently screwed. I say "inadvertently" because I truly believe based on their behavior that they were not intentionally trying to screw me. They believed the two items were related, they had had this argument many times before and were not prepared to be questioned. While both the service manager and the warranty guy seemed at least junior college educated, proving my argument to them took longer than it should have between three adults.

However, valid logic does not always guarantee truth or a sound argument. This is where it gets a little funky. Valid logic is when the structure of logic is correct in the way of syntax and semantics rather than truth. Truth comes from deductive reasoning of said logic. For example:

All transmissions are covered parts. All covered parts are free. Therefore, all transmissions are free. This logic is technically valid, and if the premises are true, then of course the conclusion must be true. You can see here however that it's not always true, though in some situations it could be. While the logic is valid, not all transmissions are free, only those covered by the warranty. So based on that, saying all transmissions are free is not sound logic.

To take it one step further:

All Daleks are brown. Some brown things are Cylons. Therefore, some Daleks are Cylons. Sci-fi fan or not, you probably know that this is not true. The basic lesson here is that, while the logic above might seem valid because of the structure of the statement, it takes a further understanding to figure out why it's not necessarily true: That is, based on the first two statements it's possible that some Daleks are Cylons, but it's not logically concludable. That's where deductive reasoning comes on top of the logic. The underlying lesson here is not to immediately assume everything you read or are told is true, something all children need to and should learn.

This is the direct lesson that needs to be passed on to our children: that of not accepting the immediately visible logic. While not all problems are complex enough to require the scientific method, some of them need some deduction to determine if they are true. Take the example above — how many kids would immediately be satisfied with the false conclusion? Sure, it's a bit geeky with the examples, but switch out bears for Daleks and puppies for Cylons. That makes it easier, and takes the actual research out of it (to find out what Daleks and Cylons are respectively) but many people would just accept that in fact some bears are puppies, if presented with this problem in the context of a textbook or word problem.

Maybe I'm being paranoid or thinking too doomsday, whatever, but I think this is an epidemic. Children are becoming lazier and not as self sufficient because their parents have a problem with watching a three year old cry after they tell her to remove her own jeans, or ask her to put away her own toys (yes, organizational logic falls under the main topic). These are the same parents who do their kid's science project while the kid is playing video games. These kids grow up lacking the simple problem solving skills that make navigating life much easier. Remember when you were growing up and you had the plastic stacking toys? Well, instead of toys for early development like that, parents are just plopping their kids down in front of the television. While there is some educational type programming on television, it's just not the same as hands-on experience.

My father is an engineer, and he taught me logic and reasoning by making me solve simple, then complex, problems on my own. Or at least giving me the opportunity to solve them on my own. This helped develop critical thinking and problem solving skills, something a lot of children lack these days. Too often I see children that are not allowed to solve problems on their own; instead their parents simply do it for them without argument or discussion. Hell, I am surrounded by adults every day that are unable to solve simple problems, instead choosing to immediately ask me at which point I have to fill the role that their parents never did and – knowing the solution – tell them to solve it themselves, or at least try first.

One of the things I like to work on with my kids is math. There is nothing that teaches deductive reasoning and logic better than math word problems. They are at the age where basic algebra can come into play, which sharpens their reasoning skills because they start to view real world issues with algebraic solutions. Another thing is logic puzzles, crossword puzzles and first person shooters. Actually, not that last one. That's just the reward.

Since I weeded out the folks that don't teach their kids logic in the first two paragraphs, as representatives of the real world it's up to the rest of us to spread the knowledge. It won't be easy. The best thing we can do is teach these thought processes to our children, so that they may look at other children with looks of bewilderment when other children are unable to solve simple tasks. Hopefully, they will not simply do the task for them, but teach them to think. I'm not saying we need to build a whole new generation of project managers and analysts, but it would be better than a generation of task-oriented mindless office drones with untied shoelaces, shoving on a door at the Midvale School for the Gifted.

h/t to @aubreygirl22 for the logical conversation.
Image: Flickr user William Notowidagdo. Used under Creative Commons License.

0 comments

Leave a Reply

Your email address will not be published. Required fields are marked *